
Policy Gradient Algorithms
• Why?

– Value functions can be very complex for large
problems, while policies have a simpler form.

– Convergence of learning algorithms not guaranteed
for approximate value functions whereas policy
gradient methods are well-behaved with function
approximation.

– Value function methods run into a lot of problems in
partially observable environments. Policy gradient
methods are “better" behaved even in this scenario.



Policy Gradient Methods

• Policy depends on some parameters Θ
– Action preferences
– Mean and variance
– Weights of a neural network

• Modify policy parameters directly instead of
estimating the action values

• Maximize:



Liklihood Ratio Method
• Computing gradient of performance w.r.t.

parameters:

• Estimate the gradient from N samples:



REINFORCE (Williams ’92)

• Incremental version:

Reinforcement
Baseline

Characteristic
Eligibility



Special case – Generalized LR-I

• Consider binary bandit problems with
arbitrary rewards



Reinforcement Comparison

• Set baseline to average of observed
rewards

• Softmax action selection



Reinforcement Comparison contd.
Computation of
characteristic eligibility for
softmax action selection



Continuous Actions

• Use a Gaussian distribution to select
actions

• For suitable choice of parameters:



MC Policy Gradient
• Samples are entire trajectories

s0, a0, r1, s1, a1, . . . , sT
• Evaluation criterion is the return along the path,

instead of immediate rewards
• The gradient estimation equation becomes:

where, Ri(s0) is the return starting from state s0
and pi(s0;Θ) is the probability of ith trajectory,
starting from s0 and using policy given by Θ.



MC Policy Gradient contd.

• The “likelihood ratio" in this case evaluates
to:

• Estimate depends on starting state s0.
One way to address this problem is to
assume a fixed initial state.

• More common assumption is to use the
average reward formulation.

(1)



MC Policy Gradient contd.

• Recall:
– Maximize average reward per time step:

– Unichain assumption: One set of “recurrent"
class of states

–  ρπ is then state independent
– Recurrent class: Starting from any state in the

class, the probability of visiting all the states in
the class is 1.



MC Policy Gradient contd.

• Assumption 1: For every policy under
consideration, the Unichain assumption is
satisfied, with the same set of recurrent
states.

• Pick one recurrent state i*. Trajectories are
defined as starting and ending at this
recurrent state.

• Assumption 2: Bounded rewards.



Incremental Update
• We can incrementally compute the summation in

Equation 1, over one trajectory as follows:

• zT is known as an eligibility trace. Recall the
characteristic eligibility term from REINFORCE:

• zT keeps track of this eligibility over time, hence
is called a trace.



Simple MC Policy Gradient Algorithm

Adjust Θ using a simple stochastic gradient ascent rule:

where α is a positive step size parameter.



Simple MC Policy Gradient Algorithm contd.

• The algorithm computes an unbiased
estimate of the gradient.

• Can be very slow due to high variance in
the estimates.

• Variance is related to the “recurrence time”
or the episode length.

• For problems with large state spaces, the
variance becomes unacceptably high.



Variance reduction techniques

• Truncate summation (eligibility traces)
• Decay eligibility traces. In this case, the

decay rate controls the bias-variance trade
off.

• Actor-Critic methods. These methods use
value function estimates to reduce
variance.

• Employ a set of recurrent states to define
episodes, instead of just one i*.


