Policy Gradient Algorithms

 Why?
— Value functions can be very complex for large
problems, while policies have a simpler form.

— Convergence of learning algorithms not guaranteed
for approximate value functions whereas policy
gradient methods are well-behaved with function
approximation.

— Value function methods run into a lot of problems in
partially observable environments. Policy gradient
methods are “better" behaved even in this scenario.



Policy Gradient Methods

* Policy depends on some parameters O
— Action preferences
— Mean and variance
— Weights of a neural network

* Modify policy parameters directly instead of
estimating the action values
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Liklihood Ratio Method

« Computing gradient of performance w.r.t.
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« Estimate the gradient from N samples:
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REINFORCE (Williams ’92)
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Special case — Generalized Ly,

» Consider binary bandit problems with
arbitrary rewards
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Reinforcement Comparison

» Set baseline to average of observed
rewards
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o Softmax action selection
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Reinforcement Comparison contd.
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Continuous Actions

 Use a Gaussian distribution to select
actions
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* For suitable choice of parameters:
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MC Policy Gradient

Samples are entire trajectories
Sg» 8g, M1, S1, 84, - - ., ST

Evaluation criterion is the return along the path,
instead of immediate rewards

The gradient estimation equation becomes:
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where, Ri(s,) is the return starting from state s,
and p;(s ;@? is the probability of ith trajectory,
starting ?rom S, and using policy given by ©.



MC Policy Gradient contd.

 The “likelihood ratio" in this case evaluates

to: »
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« Estimate depends on starting state s,
One way to address this problem is to
assume a fixed initial state.

 More common assumption is to use the
average reward formulation.



MC Policy Gradient contd.

 Recall:

— Maximize average reward per time step:
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— Unichain assumption: One set of “recurrent”
class of states

— p™is then state independent

— Recurrent class: Starting from any state in the
class, the probability of visiting all the states in
the class is 1.



MC Policy Gradient contd.

* Assumption 1: For every policy under
consideration, the Unichain assumption is
satisfied, with the same set of recurrent
states.

* Pick one recurrent state i*. Trajectories are
defined as starting and ending at this
recurrent state.

* Assumption 2: Bounded rewards.



Incremental Update

* We can incrementally compute the summation in
Equation 1, over one trajectory as follows:
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* z;Is known as an eligibility trace. Recall the
characteristic eligibility term from REINFORCE:
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» z; keeps track of this eligibility over time, hence
IS called a trace.



Simple MC Policy Gradient Algorithm

Algorithm 1 Simple MC Policy Gradient Algorithm
: Set j=0,Ry=0,=0.0=0
2: for each episode do
3:  for each transition sg, a7, 5447 do
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9: end for
10: Return Ay /N, where N is the number of episodes

Adjust © using a simple stochastic gradient ascent rule:
0 — 64+ ﬂ%

where a is a positive step size parameter.



Simple MC Policy Gradient Algorithm contd.

* The algorithm computes an unbiased
estimate of the gradient.

» Can be very slow due to high variance in
the estimates.

* Variance is related to the “recurrence time’
or the episode length.

* For problems with large state spaces, the
variance becomes unacceptably high.
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Variance reduction techniques

Truncate summation (eligibility traces)

Decay eligibility traces. In this case, the
decay rate controls the bias-variance trade
off.

Actor-Critic methods. These methods use
value function estimates to reduce
variance.

Employ a set of recurrent states to define
episodes, instead of just one I”.



